
Chapitre 11

Thermodynamique des processus

irréversibles

11.1 Equation de diffusion de la chaleur

Montrer que le profil de température (11.44),

T (x, t) =
C√
t

exp

(
− x2

4λ t

)
où T est la température et x la coordonnée spatiale, est une solution de l’équa-
tion de diffusion de la chaleur (11.37).

11.2 Déphasage thermique

Un long fil de cuivre de diffusivité thermique λ est chauffé à une extrémité par
une flamme passant périodiquement l’extrémité du fil alors que l’autre extré-
mité est située si loin de la flamme qu’elle reste à température ambiante T0. On
considère le fil comme un système unidimensionnel avec une variation pério-
dique de température d’amplitude ∆T en x = 0. La température à l’extrémité
chaude s’écrit,

T (0, t) = T0 + ∆T cos (ωt)

où x est la coordonnée spatiale le long du fil. Dès que le fil a atteint un régime
où chaque point du fil a une variation périodique de température, montrer que
le profile de température est donné par,

T (x, t) = T0 + ∆T exp
(
− x

d

)
cos
(
ω t− x

d

)
où d =

√
2λ

ω

L’oscillation de la température en position x est déphasée d’un angle −x/d par
rapport à l’oscillation en position x = 0. L’amplitude d’oscillation est atténue
d’un facteur exp (−x/d). Cet exercice est analogue à l’isolation thermique d’un
bâtiment soumis à une puisssance thermique périodique (sect. 3.10).
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11.3 Equation de la chaleur avec une source de chaleur

L’équation de diffusion de la chaleur a été établie en sect. 11.4.2, en absence de
terme de source. Montrer que pour un conducteur électrique en présence d’une
densité de courant électrique conductif jq = qe je, l’équation de la chaleur
devient,

∂t T = λ∇2 T − τ

c
jq ·∇T +

j2q
σ c

où λ est la diffusivité thermique, σ est la conductivité électrique, τ est le co-
efficient de Thomson du conducteur électrique et c est la densité de chaleur
spécifique des électrons de conduction.

11.4 Effet Joule dans un fil

Etablir le profil de température d’un fil de longueur L et de rayon r parcouru par
un courant électrique I, de la gauche vers la droite, qui provoque l’échauffement
du fil. Le fil a une conductivité électrique σ et une conductivité thermique κ.
La chaleur se propage le long du fil jusqu’à son extrémité sans qu’il ait de
dissipation par sa surface latérale. L’effet Thomson est négligeable par rapport
à l’effet Joule. Les extrémités gauche et droite sont maintenues à la température
constante T0. Déterminer le profil de température T (x) le long du fil lorsqu’il
a atteint un état stationnaire.

11.5 Effet Thomson dans un fil

Etablir le profil de température d’un fil de longueur L et de rayon r parcouru
par un courant électrique I, de la gauche vers la droite, qui provoque l’échauf-
fement du fil. Le fil a une conductivité électrique σ et un coefficient Thomson
τ . La chaleur se propage le long du fil jusqu’à son extrémité sans qu’il ait de
dissipation par sa surface latérale. L’effet Joule est négligeable par rapport à
l’effet Thomson. L’extrémité gauche est maintenu à la température constante
T0. Déterminer le profil de température T (x) le long du fil lorsqu’il a atteint un
état stationnaire. Donner aussi une expression de la température à l’extrémité
droite en termes du coefficient Thomson τ et de la résistance électrique R du
fil.

11.6 Echangeur de chaleur

Un échangeur de chaleur est constitué de deux tubes identiques séparés par
une paroi diatherme de section A, d’épaisseur h et de conductivité thermique
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κ. Dans les deux tubes, un liquide s’écoule aux vitesses uniformes v1 = v1 x̂
et v2 = − v2 x̂, avec v1 > 0 et v2 > 0, où x̂ est le vecteur unitaire parallèle
à l’écoulement du liquide dans le tube 1. La température T1 du liquide dans
le tube 1 est plus grande que la température T2 du liquide dans le tube 2, i.e.
T1 > T2. Ainsi, il y a une densité de courant de chaleur jQ = jQ ŷ, avec jQ > 0,
qui traverse la paroi séparant les tubes, où ŷ est le vecteur unitaire orthogonal
à la paroi, orienté positivement du tube 1 au tube 2. Il n’y a pas de densité de
courant de liquide à travers la paroi, i.e. jC = 0. La conductivité thermique est
considérée comme négligeable dans la direction de l’écoulement du flux mais
elle est suffisamment importante dans la direction orthogonale pour garantir
une température homogène à travers toute section des deux tubes. On considère
que l’échangeur de chaleur a atteint un état stationnaire.

1) Montrer que les profils de température dans les fluides sont donnés par les
équations différentielles,

∂x T1 = − κ

h2 c1 v1
(T1 − T2 )

∂x T2 =
κ

h2 c2 v2
(T1 − T2 )

où c1 et c2 sont les densités de chaleur spécifiques des liquides 1 et 2, κ est
la conductivité thermique de la paroi diatherme.

2) Montrer que la densité de courant convectif de chaleur j = c1 v1 T1+c2 v2 T2
est homogène.

3) Déterminer la différence de température ∆T (x) = T1 (x)− T2 (x).

4) Déterminer les profils de température T1 (x) et T2 (x).

5) Montrer que sur une distance suffisamment courte,

T1 (x) =
j + c2 v2 ∆T (0)

c1 v1 + c2 v2
− κ∆T (0)

h2 c1 v1
x

T2 (x) =
j − c1 v1 ∆T (0)

c1 v1 + c2 v2
+
κ∆T (0)

h2 c2 v2
x

11.7 Thermocouple

On considère un fil de métal A dont les extrémités sont reliées à deux fils d’un
métal B qui sont branchés aux bornes gauche « g » et droite « d » d’un volt-
mètre (fig. 11.1). Une jonction entre les fils des métaux A et B est maintenue à
une température de référence fixe T1 (glace fondue ou azote liquide) et l’autre
jonction est à une température variable T2 que l’on désire mesurer. Les deux
bornes du voltmètre sont à la même température T pour que la mesure ne
dépende que des températures T1 et T2 aux extrémités du fil de métal A. Cette
mesure de température revient à mesurer l’effet Seebeck du métal A. On consi-
dère que les coefficients Seebeck εA et εB sont indépendants de la température.
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1 2

Fig. 11.1 Un voltmètre détecte la chute de tension aux extrémités d’un circuit composé
d’un fil de métal B, d’un fil de métal A et d’un autre fil de métal B. Les jonctions entre
les fils sont à température T1 et T2 comme indiqué. Les deux bornes du voltmètre sont à
température T .

1) Déterminer les différences de potentiel électrochimiques µ̄1 − µ̄g, µ̄2 − µ̄1

et µ̄d − µ̄2.

2) Compte tenu du fait que le potentiel chimique µe des électrons ne dépend
que de la température T , en déduire la différence de potentiel électrostatique
∆ϕ = ϕd − ϕg entre les bornes du voltmètre.

3) Le pouvoir thermoélectrique εAB du thermocouple est défini comme la dé-
rivée de la différence de potentiel électrostatique en fonction de la tempé-
rature,

εAB =
∂∆ϕ

∂T2

Exprimer εAB en termes des coefficients Seebeck εA et εB .

11.8 Méthode de Harman

Une barre est contactée à chaque extrémité à des électrodes par des fils élec-
triques qui sont suffisamment épais pour qu’un courant électrique les traversent
mais suffisamment minces pour que le transfert de chaleur y soit négligeable.
Les résistances de contact et la chaleur dissipée par la barre sont négligeables.
Dans ces conditions expérimentales, on peut effectuer une mesure adiabatique
de la résistivité du matériau de la barre. Comme Harman le suggérait dans
son célèbre article,

(1)

on peut trouver des conditions expérimentales telles que
les effets Joule et Thomson soient négligeables. Utiliser les relations phénomé-
nologiques linéaires (11.92) pour montrer que la résistivité adiabatique ainsi

(1)
T. C. Harman, Special Techniques for Measurement of Thermoelectric Properties, J. App.
Phys. 29, 1373 (1958).
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mesurée s’écrit,

ρad = ρ

(
1 +

ε2

κ ρ
T

)
où ρ = 1/σ est la résistivité isotherme, κ est la conductivité thermique et ε est
le coefficient Seebeck du matériau de la barre.

11.9 Générateur Peltier

Un générateur Peletier est constitué de deux éléments thermoélectriques reliés
en série (fig. 11.2). Le côté gauche du générateur est maintenu à une tempéra-
ture T+ et le côté droit à une température T−. Le courant électrique I généré
par le générateur Peltier circule à travers les matériaux thermoélectriques dé-
notés 1 et 2. La plaque chauffée à température T+ relie électriquement les deux
matériaux, mais elle n’est pas électriquement accessible à l’utilisateur. Son po-
tentiel électrique est V +. Les autres extrémités des matériaux thermoélectriques
sont du côté froid, à température T−. Ils sont reliés aux bornes électrique du
dispositif. Une résistance de charge R0 est reliée à ces bornes. La tension V est
la différence de potentiel électrique entre les bornes.

I
1 2

I

R0

V +

T –

T + T +

T – T – V
V = 0

Fig. 11.2 Un générateur Peltier a une charge représentée par la résistance R0 reliée aux
bornes. V est la tension entre les bornes. Le pont électrique à V + n’est pas accessible à
l’utilisateur. Les régions notées 1 et 2 représentent les deux matériaux thermoélectriques. Les
régions notées T+ et T− sont les côtés chaud et froid du dispositif.

On analyse le fonctionnement de ce générateur à l’aide des équations de trans-
port de la charge électrique et de le chaleur,

jq1 = −σ1 ε1 ∇T1 − σ1 ∇ϕ1 et jQ1
= −κ1 ∇T1 + T1 ε1 jq1

jq2 = −σ2 ε2 ∇T2 − σ2 ∇ϕ2 et jQ2
= −κ2 ∇T2 + T2 ε2 jq2
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Les matériaux thermoélectriques 1 et 2 ont une longueur d et une section d’aire
A, ce qui peut s’écrire comme,

d =

∫ d

0

dr · r̂ A =

∫
S

dS · r̂

où r̂ est un vecteur unitaire orienté dans le sens des aiguilles d’une montre
le long de la densité de courant électrique jq, et les vecteurs infinitésimaux
de longueur et de surface dr et dS sont orienté dans la même direction. La
différence de température entre le côté chaud et le côté froid s’écrit,

∆T = T+ − T− =

∫ d

0

dr ·∇T1 =

∫ d

0

dr · (−∇T2)

De manière similaire, les différences de potentiel électrique ∆ϕ1 et ∆ϕ2 entre
les côtés chaud et froid s’écrivent,

∆ϕ1 = V + =

∫ d

0

dr ·∇ϕ1

∆ϕ2 = V + − V =

∫ d

0

dr · (−∇ϕ2)

La conservation de la charge électrique implique que les densités de courant
électrique sont les mêmes pour chaque matériau, i.e. jq1 = jq2 . Le courant
électrique I traversant les matériaux 1 et 2 sont donnés par l’intégrale des
densités de courant électrique jq1 et jq2 sur la surface A de la section,

I =

∫
S

jq1 · dS =

∫
S

jq2 · dS

D’après la relation (10.104), les puissances thermiques PQ1 et PQ2 sont les inté-
grales des densités de courant de chaleur jQ1

et jQ2
, traversant les matériaux

1 et 2, sur la surface A de la section,

PQ1
=

∫
S

(
− jQ1

)
· dS PQ2

=

∫
S

jQ2
· dS

Déterminer :

1) la puissance thermique P ′Q appliquée sur le côté chaud du dispositif lors-
qu’aucun courant électrique le traverse.

2) la résistance électrique R des deux matériaux thermoélectriques lorsque les
températures sont égales, i.e. T+ = T−, et qu’aucun courant électrique
traverse la résistance R0, i.e. lorsque R0 = ∞. Dans ce cas, un courant
électrique traverse les matériaux thermoélectriques sans traverser la résis-
tance.

3) le courant électrique I en termes de la différence de température ∆T .
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4) le rendement thermodynamique du générateur défini comme,

η =
R0 I

2

PQ

où ici, PQ est la puissance thermique du côté chaud lorsque le courant élec-
trique traverse le dispositif. Montrer que la résistance de charge optimale
s’écrit,

R0 = R
√

1 + ζ

où ζ est un paramètre sans dimension donné par,
(2)

ζ =
T+ (ε1 − ε2)

2

(κ1 + κ2)

(
1

σ1
+

1

σ2

)

11.10 Coefficient ZT d’un matériau thermoélectrique

Les propriétés de transport d’un matériau thermoélectrique de section d’aire A
et de longueur L sont définies par les équations de transport,

jq = −σ E∇T − σ∇ϕ et jQ = −κ∇T + T ε jq

en conformité avec les relations (11.92), où ∇µe = 0, et (11.95). Le rendement
η du matériau thermoélectrique est défini comme,

η = − Pq
PQ

où PQ est la puissance thermique et Pq est la puissance électrique définie
comme,

Pq =

∫
V

jq · (−∇ϕ) dV

Ecrire le rendement η en fonction du rapport,
(3)

r =
I

κ

L

A

1

∆T

où I est le courant électrique traversant le matériau thermoélectrique. Dans
la limite où l’effet thermoélectrique est beaucoup plus petit que la puissance
thermique, i.e. r ε� 1/T+, montrer que le rendement maximal η s’écrit,

η =

(
1− T−

T+

)
σ ε2

4κ
T+

Le coefficient
(
σ ε2/κ

)
T+ est appelé le « coefficient ZT » du matériau thermo-

électrique. Le terme entre parenthèses est le rendement de Carnot.

(2)
H. J. Goldsmid, Introduction to Thermoelectricity, Springer (2010).

(3)
G. J. Snyder, T. S. Ursell, Thermoelectric Efficiency and Compatibility, Phys. Rev. Lett.
91 (4) 138301 (2003).
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11.11 Jonction thermoélectrique

On considère un barreau constitué de deux métaux différents A et B d’épaisseur
d en contact thermique. Les métaux sont définis par leur conductivité électrique
σA ou σB , leur conductivité thermique κA ou κB , et leur coefficient Seebeck εA
ou εB . Ces propriétés peuvent toutes être considérés comme indépendantes de
la température. L’extrémité du métal A est en contact avec un bain thermique
à haute température et l’extrémité du métal B est en contact avec un bain
thermique à basse température ce qui impose une différence de température ∆T
à travers le barreau. Une densité de courant électrique jq constante traverse
le barreau. On mesure une différence de potentiel électrostatique ∆ϕ entre les
extrémités du barreau (fig. 11.3).

Fig. 11.3 Un courant électrique traverse un barreau formés de deux métaux différents A
et B en contact électrique. La figure indique les variations de potentiel électrostatique et de
température à travers chaque métal. L’origine de l’axe Or est située à la jonction entre les
deux métaux.

Par conservation de la charge électrique en régime stationnaire, la densité
de courant électrique jq et la densité de courant de chaleur jQ sont conservés à
la jonction entre les métaux A et B, i.e. jq = jqA = jqB et jQ = jQA

= jQB
. Le

courant électrique I qui traverse les métaux A et B est l’intégrale des densités
de courant jqA et jqB sur la surface A de la section,

I =

∫
S

jqA · dS =

∫
S

jqB · dS

où le vecteur de surface infinitésimale dS est orienté le long de la densité de
courant électrique jq. La puissance thermique PQ exercée sur les métaux A et
B est l’intégrale des densités de courant de chaleur jQA

et jQB
sur la surface

A de la section,

PQ =

∫
S

jQA
· dS =

∫
S

jQB
· dS

Les différences de température ∆TA et ∆TB , et les différences de potentiel
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électrostatique ∆ϕA et ∆ϕB à travers les métaux A et B sont donnés par,

∆TA =

∫ 0

− d
dr · (−∇TA) et ∆TB =

∫ d

0

dr · (−∇TB)

∆ϕA =

∫ 0

− d
dr · (−∇ϕA) et ∆ϕB =

∫ d

0

dr · (−∇ϕB)

où le vecteur de longueur infinitésimale dr est orienté le long de la densité de
courant électrique jq et de la densité de courant de chaleur jQ. La différence
de température ∆T et la différence de potentiel électrostatique ∆ϕ à travers
tout le barreau satisfont,

∆T = ∆TA + ∆TB et ∆ϕ = ∆ϕA + ∆ϕB

Les métaux A et B ont une longueur d et une section de surface A. Ainsi,

d =

∫ 0

− d
dr · r̂ =

∫ d

0

dr · r̂ et A =

∫
S

dS · r̂

où r̂ est le vecteur unitaire orienté dans le sens des aiguilles d’une montre le
long de la densité de courant électrique jq et de la densité de courant de chaleur
jQ.

1) Exprimer les équations de transport de la charge électrique et de la cha-
leur (11.95) pour les métaux A et B à la jonction entre les métaux en termes
des forces généralisées ∇TA, ∇TB , ∇ϕA, ∇ϕB et de la température TAB
evaluée à la jonction entre les métaux.

2) Si l’épaisseur d des métaux est suffisamment petite, les gradients peuvent
être considérés comme indépendants de la position. Dans ce cas, intégrer
l’équation de transport de la charge électrique entre les extrémités des mé-
taux A et B.

3) Dans ce même cas, intégrer l’équation de transport de la chaleur entre les
extrémités des métaux A et B.

4) En déduire les expressions de ∆TA et ∆TB en termes de I, ∆T et des
coefficients phénoménologiques.

5) En déduire les expressions de ∆ϕA et ∆ϕB en termes de I, ∆T et des
coefficients phénoménologiques.

6) Déterminer l’expression de ∆ϕ en termes de TAB , I, ∆T et des coefficients
phénoménologiques.

11.12 Effets de transport transverses

Un équation de transport comme la loi d’Ohm (11.74),

∇ϕ = −ρ · jq
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lie deux vecteurs, qui sont la densité de courant électrique conductif jq et le
gradient de potentiel électrique ∇ϕ par une application linéaire, qui est la
résistivité électrique ρ. Mathématiquement, un vecteur est un tenseur de rang
1 et une application linéaire entre deux vecteurs est un tenseur de rang 2.

1) Montrer que la résistivité électrique ρ peut être décomposée en une somme
de la partie symétrique ρs et de la partie antisymétrique ρa.

2) Montrer que la partie antisymétrique ρa apporte une contribution au trans-
port qui peut être écrite comme,

∇a ϕ = − ρa
(
û× jq

)
où ∇a ϕ est la contribution antisymétrique au gradient de potentiel élec-
trique et û est un vecteur unitaire axial.
La décomposition et l’expression de la partie antisymétrique du gradient
de potentiel électrique est un résultat général qui s’applique pour toute
relation phénoménologique linéaire entre un vecteur densité de courant et
un vecteur force généralisée.

11.13 Effet Hall

On considère un conducteur isotrope en présence d’un champ d’induction ma-
gnétiqueB. La résistivité électrique est un tenseur de rang 2 qui est une fonction
du champ d’induction magnétique B et la loi d’Ohm’s s’écrit,

∇ϕ = −ρ (B) · jq

La réversibilité de la dynamique à l’échelle microscopique implique que la trans-
posée du tenseur de résistivité électrique est obtenue en inversant l’orientation
du champ d’induction magnétique B.

(4)

Ainsi,

ρT (B) = ρ (−B)

Ce résultat ne peut pas être établi dans le cadre de la thermodynamique mais
requiert l’usage de la physique statistique. En électrodynamique linéaire, si le
champ d’induction magnétiqueB est appliqué perpendiculairement à la densité
de courant électrique conductif jq, montrer que la loi d’Ohm peut s’écrire,

∇ϕ = −ρ · jq − H jq ×B

où le premier terme est la loi d’Ohm (11.74) en absence de champ d’induc-
tion magnétique et le deuxième terme est l’effet Hall (11.75) dans la direction
orthogonale au champ d’induction magnétique B et à la densité de courant
électrique conductif. Utiliser le résultat établi en sect. 11.12.

(4)
L. D. Landau, E. M. Lifshitz, L.-P. Pitaevskii, Electrodynamics of Continuous Media,
Landau and Lifshitz Course of Theoretical Physics volume 8, Pergamon Press, 3rd edition
(2000).
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11.14 Transport de chaleur et symétrie cristalline

On considère un cristal de symétrie hexagonale, c’est-à-dire qu’il est invariant
sous une rotation d’angle π/6 autour de l’axe vertical dans le plan horizontal.
Cela signifie que les propriétés physiques du cristal sont les mêmes après une
telle rotation. Montrer que le tenseur de conductivité thermique symétrique κ
s’écrit en composantes comme,

κ =

κ⊥ 0 0
0 κ⊥ 0
0 0 κ‖


où κ‖ est la conductivité thermique le long de l’axe de rotation vertical et κ⊥
est la conductivité thermique dans le plan de rotation horizontal.

11.15 Effet Ettingshausen planaire

Dans ce chapitre, on a examiné plusieurs exemples de densité de courant uni-
dimensionnel qui induisent le gradient d’une grandeur intensive dans une di-
rection perpendiculaire. Ces effets sont appelés du nom des physiciens qui les
ont découverts : Righi-Leduc (11.29), Hall (11.75), Nernst (11.85), Ettingshau-
sen (11.80). Le dernier se réfère à un gradient de température induit par une
densité de courant électrique orthogonale. Cet effet a été récemment mis en
évidence dans un cristal constitué de deux types de porteurs de charges élec-
triques qui présente une forte anisotropie cristalline dans le plan où ont lieu les
transport de chaleur et de charge électrique. Aucun champ d’induction magné-
tique orthogonal n’a besoin d’être appliqué orthogonal à ce plan pour observer
cet effet.

(5)

Le matériau a deux types de porteurs de charges électriques, les électrons
(e) et les trous (h). On suppose qu’il n’y a pas de « réaction chimique » entre les
deux. Les propriétés thermoélectriques sont isotropes, c’est-à-dire qu’elles sont
identiques dans toutes les directions. Par conséquent, les tenseurs de Seebeck
pour les électrons et les trous s’écrivent,

εe =

(
εe 0
0 εe

)
et εh =

(
εh 0
0 εh

)
Toutefois, les conductivités varient beaucoup entre deux directions orthogo-
nales. Ainsi, les tenseurs de conductivité s’écrivent,

σe =

(
σe,aa 0

0 σe,bb

)
et σh =

(
σh,aa 0

0 σh,bb

)
(5)

C. Zhou, S. Birner, Y. Tang, K. Heinselman, M. Grayson, Driving perpendicular Heat
Flow : (p × n)-Type Transverse Thermoelectrics for Microscale and Cryogenic Peltier
Cooling, Phys. Rev. Lett. 110, 227701 (2013).
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où les indices a et b dénotent les axes a et b, qui sont des axes cristallins
orthogonaux.

On considère un transport de charges électriques le long de l’axe x qui fait
un angle θ avec l’axe a. Monter que la densité de courant électrique jq induit une
densité de courant de chaleur jQ le long de l’axe y. C’est l’effet Ettingshausen
planaire. Il peut être établi en utilisant les instructions suivantes :

1) Montrer que le tenseur de Seebeck de ce cristal s’écrit,
(6)

ε = (σe + σh)
−1 · (σe · εe + σh · εh)

2) Montrer que le tenseur de Seebeck pour le cristal est diagonal et s’écrit,

ε =

(
εaa 0
0 εbb

)
où la composante diagonale εaa est différente de εbb en général. La matrice
est donnée ici pour un repère orienté le long des axes cristallins a et b.

3) Ecrire les composantes du tenseur de Seebeck en termes des coordonnées
spatiales (x, y),

ε =

(
εxx εxy
εyx εyy

)
en termes des composantes diagonales εaa et εbb du tenseur de Seebeck
représenté en termes des coordonnées spatiales (a, b).

4) La densité de courant de chaleur jQ est liée à la densité de courant élec-
trique jq par,

jQ = Π · jq

qui est une version locale de l’effet Peltier (11.108). Le tenseur de Peltier
est lié au tenseur de Seebeck par,

Π = T ε

En particulier, pour une densité de courant de électrique jq = jq,x x̂, où x̂
est un vecteur unitaire le long de l’axe x, montrer que la composante jQ,y
le long de l’axe y de la densité de courant de chaleur jQ = jQ,x x̂+ jQ,y ŷ,
où ŷ est le vecteur unitaire le long de l’axe y, s’écrit,

jQ,y =
1

2
T (εaa − εbb) sin (2 θ) jq,x

Ainsi, l’effet Ettingshausen planaire est maximal pour un angle θ = π/4.

(6)
S. D. Brechet et J.-Ph. Ansermet, Heat-driven spin currents on large scales., physica
status solidi (RRL) 5, (12) 423-425 (2011).
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11.16 Structure de Turing

Un milieu biologique est constitué de deux substances 1 et 2 de densités n1 et
n2. Ce milieu génère ces deux substances à l’aide de processus caractérisés par
des densités de source π1 (n1, n2) et π2 (n1, n2). Les substances 1 et 2 peuvent
diffuser dans le milieu. Les densités de courant de matière j1 et j2 satisfont la
loi de Fick (11.51),

j1 = −D1 ∇n1 et j2 = −D2 ∇n2

où D1 > 0 et D2 > 0 sont les constantes de diffusion homogènes des substances
1 et 2. Le milieu a un volume fixe, ce qui signifie que son taux d’expansion
s’annule, i.e. ∇ · v = 0. Ainsi, les équations de continuité pour les substances 1
et 2 s’écrivent,

ṅ1 + ∇ · j1 = π1 (n1, n2) et ṅ2 + ∇ · j2 = π2 (n1, n2)

A l’équilibre, on suppose que le système est homogène et caractérisé par les
densités n01 et n02 des substances 1 et 2. Dans le voisinage de l’équilibre,
les densités de source de matière π1 (n1, n2) et π2 (n1, n2) s’écrivent au premier
ordre en termes des perturbations de densité ∆n1 = n1− n01 et ∆n2 = n2− n02
par,

π1 (n1, n2) = Ω11 ∆n1 + Ω12 ∆n2

π2 (n1, n2) = Ω21 ∆n1 + Ω22 ∆n2

où les coefficients Ω11, Ω12, Ω21, Ω22 s’écrivent,

Ω11 =
∂π1
∂n1

Ω12 =
∂π1
∂n2

Ω21 =
∂π2
∂n1

Ω22 =
∂π2
∂n2

Pour rester dans le cadre de la phénoménologie des processus irréversibles, on
fait ici l’hypothèse que les processus qui génèrent les substances 1 et 2 sont les

deux réactions chimiques 1
a−→ 2 et 2

b−→ 1 décrites par les coefficients
stœchiométriques νa1 = − 1, νa2 = 1, νb1 = 1, νb2 = − 1 et les densités de
taux de réaction ωa et ωb. On suppose que la température T et les potentiels
chimiques µ1 et µ2 sont homogènes, i.e. ∇T = 0 et ∇µ1 = ∇µ2 = 0. Analyser
l’évolution des perturbations de densité ∆n1 et ∆n2 en utilisant les instructions
suivantes :

1) Exprimer les coefficients Ω11, Ω12, Ω21, Ω22 en termes de la densité totale
n = n1 + n2, des perturbations de densité ∆n1 et ∆n2, de la température
T et du scalaire W ≥ 0, qui est une combinaison linéaire des éléments de
matrice d’Onsager Laa, Lab, Lba et Lbb. Commencer en utilisant le deuxième
principe, i.e. πs ≥ 0, et la relation (8.68) pour un mélange de gaz parfaits.

2) Déterminer les équations d’évolution temporelles des perturbations de den-
sité ∆n1 et ∆n2.

3) Montrer que sous les conditions imposées en 1) la relation,(
∆n1 (t)
∆n2 (t)

)
= eλ t cos (k · r + ϕ)

(
∆n1 (0)
∆n2 (0)

)
est une solution des équations d’évolution temporelle couplées où λ < 0.
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11.17 Ultramicroélectrodes

En électrochimie, le courant électrique qu’on observe est dû essentiellement à
la diffusion des ions dans l’électrolyte parce que le champ électrique est écranté
par l’électrolyte, sauf au voisinage immédiat des électrodes. Il a été constaté
que ces courants conductifs peuvent être évités en utilisant de très petites élec-
trodes appelées des ultramicroélectrodes.

(7) (8) (9)

On décrit le fonctionne-
ment de ces microélectrodes dans le référentiel de l’électrolyte, i.e. v = 0. Afin
de comprendre comment les densités de courant conductif varient avec la taille
de l’électrode, on considère une électrode sphérique et une densité de courant
conductif de matière de symétrie sphérique, jA = jAr r̂ ≡ jr r̂. Montrer que
lorsque le système atteint un état stationnaire, la densité de courant conductif
de matière n’est pas nul. L’analyse du comportement transitoire montrerait
que l’état stationnaire est atteint plus rapidement lorsque l’électrode est plus
petite.

(10)

En coordonnées sphériques (r, θ, φ), compte tenu de la symétrie sphé-
rique de la densité de courant de matière, i.e. ∂/∂θ = 0 et ∂/∂φ = 0, l’équation
de diffusion de la matière (11.54) pour un soluté de concentration c (r, t) s’écrit,

∂c (r, t)

∂t
= D

(
∂2c (r, t)

∂r2
+

2

r

∂c (r, t)

∂r

)
Les conditions au bord sont,

c (r > r0, t = 0) = c∗ et lim
r→∞

c (r, t) = c∗

où c∗ est la concentration très loin de l’électrode et r0 est le rayon de électrode.
D’après la relation (11.51), la densité scalaire de courant conductif de matière
jr qui caractérise cette électrode est,

jr (r0, t) = −D ∂c (r, t)

∂r

∣∣∣∣
r=r0

Etablir les résultats suivants :

1) L’équation de diffusion exprimée en termes de la fonction w (r, t) = r c (r, t)
a la structure d’une équation de diffusion où la coordonnée sphérique r jour
un rôle analogue à une coordonnée cartésienne.

2) L’équation de diffusion,

∂w (r, t)

∂t
= D

∂2w (r, t)

∂r2

(7)
K. Aoki, K. Akimoto, K. Tokuda, H. Matsuda, J. Osteryoung, Linear sweep voltammetry
at very small stationary disk electrodes, J. Electroanal. Chem. 171, 219-230 (1984).

(8)
M. Fleschmann, S. Pons, The behavior of microdisk and microring electrodes, J. Elec-
troanal. Chem. 222, 107-115 (1987).

(9)
A. M. Bond, K. B. Oldham, C. G. Zoski, Steady-state voltammetry, Analytica Chimica
Acta, 216, 177-230 (1989).

(10)
J. Heinze, Ultramicroelectrodes in Electrochemistry, Angew. Chem. Int. Ed. Engl. 32,
1268-1288 (1993).
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admet comme solution,

w (r, t) = B

∫ ν

ν0

exp
(
− ν′ 2

)
dν′ où ν =

r

2
√
Dt

et B est une grandeur à déterminer. D’abord, écrire w (r, t) = f (η) où la
variable η est une fonction sans dimension de r et t qui s’écrit,

η (r, t) =
r2

Dt

3) Dans la limite où le rayon de l’électrode est négligeable, i.e. r = 0, la densité
scalaire de courant conductif de matière s’écrit,

jr (0, t) =
B

8
√
Dt3/2

4) Après un comportement transitoire, la densité scalaire de courant conductif
de matière atteint une valeur stationnaire,

jr (r0,∞) = − D c∗

r0

11.18 Effusivité

Deux longs blocs constitués de matériaux homogènes différents sont à des tem-
pérature T1 et T2 lorsqu’ils ont mis en contact l’un avec l’autre. L’interface
atteint rapidement une température T0 qui s’écrit,

T0 =
E1 T1 + E2 T2
E1 + E2

où E1 =
√
κ1 c1 > 0 et E2 =

√
κ2 c2 > 0 sont appelées les effusivitiés des

matériaux 1 et 2, κ1 et κ2 sont les conductivités thermiques et c1 et c2 sont
les chaleurs spécifiques par unité de volume des deux matériaux. Si le matériau
1 est très chaud, mais qu’il a une conductivité thermique κ1 et une chaleur
spécifique par unité de volume c1 faibles, et qu’au contraire le matériau 2 a
une conductivité thermique κ2 et une chaleur spécifique par unité de volume
c2 importantes, alors la température de l’interface T0 sera presque T2, i.e. le
matériau 2 ne « ressent pas la chaleur » du matériau 1. Etablir ce résultat en
utilisant les instructions suivantes :

1) On considère un axe x normal à interface avec x = 0 à l’interface, x < 0
dans le matériau 1 et x > 0 dans le matériau 2. Soient T1 (x, t) et T2 (x, t)
les solutions de l’équation de diffusion de la chaleur (11.35) dans les maté-
riaux 1 et 2. Déterminer les conditions au bord sur T1 (x, t) et T2 (x, t) à
l’interface.
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2) En utilisant une démarche qui est analogue à celle présentée en sect.11.17,
montrer que les solutions générales pour les profils de température T1 (x, t)
et T2 (x, t) s’écrivent,

T1 (x, t) = C1 +D1 erf

(
x

2
√
λ1t

)
où x ≤ 0

T2 (x, t) = C2 +D2 erf

(
x

2
√
λ2t

)
où x ≥ 0

où erf (ν) est la fonction d’erreur définie comme,

erf (ν) =
2√
π

∫ ν

0

exp
(
− s2

)
ds

et C1, C2, D1 et D2 sont des coefficients constants.

3) Utiliser les conditions au bord pour déterminer ces coefficients en termes
des températures T0, T1 et T2. Montrer que la température T0 est donnée
par la relation écrite en termes des effusivités juste après que les deux blocs
aient atteint une température commune à l’interface.


