CHAPITRE 11

Thermodynamique des processus

irréversibles

11.1 Equation de diffusion de la chaleur

Mountrer que le profil de température (11.44),

ren = G o (- 22)

ou T est la température et x la coordonnée spatiale, est une solution de ’équa-
tion de diffusion de la chaleur (11.37).

11.2 Déphasage thermique

Un long fil de cuivre de diffusivité thermique X est chauffé a une extrémité par
une flamme passant périodiquement l'extrémité du fil alors que 'autre extré-
mité est située si loin de la flamme qu’elle reste a température ambiante 7. On
considere le fil comme un systéme unidimensionnel avec une variation pério-
dique de température d’amplitude AT en x = 0. La température a 'extrémité
chaude s’écrit,

T(0,t) = To + AT cos (wt)

ou x est la coordonnée spatiale le long du fil. Des que le fil a atteint un régime
ou chaque point du fil a une variation périodique de température, montrer que
le profile de température est donné par,

T(x,t):T0+AT€XP(*£>COS(wt* E) ol d= £
d d w
L’oscillation de la température en position x est déphasée d’un angle — x:/d par
rapport a l'oscillation en position x = 0. L’amplitude d’oscillation est atténue
d’un facteur exp (— x/d). Cet exercice est analogue & 'isolation thermique d’un
batiment soumis & une puisssance thermique périodique (sect. 3.10).
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11.3 Equation de la chaleur avec une source de chaleur

L’équation de diffusion de la chaleur a été établie en sect. 11.4.2, en absence de
terme de source. Montrer que pour un conducteur électrique en présence d’une
densité de courant électrique conductif j, = ¢e J., I'’équation de la chaleur

devient,
.2

BT = V2T - Lj . vr+lL
C gc

ou A est la diffusivité thermique, o est la conductivité électrique, 7 est le co-
efficient de Thomson du conducteur électrique et ¢ est la densité de chaleur
spécifique des électrons de conduction.

11.4 Effet Joule dans un fil

Etablir le profil de température d’un fil de longueur L et de rayon r parcouru par
un courant électrique I, de la gauche vers la droite, qui provoque I’échauffement
du fil. Le fil a une conductivité électrique o et une conductivité thermique k.
La chaleur se propage le long du fil jusqu’a son extrémité sans qu’il ait de
dissipation par sa surface latérale. L’effet Thomson est négligeable par rapport
a l'effet Joule. Les extrémités gauche et droite sont maintenues a la température
constante Ty. Déterminer le profil de température 7' (z) le long du fil lorsqu’il
a atteint un état stationnaire.

11.5 Effet Thomson dans un fil

Etablir le profil de température d'un fil de longueur L et de rayon r parcouru
par un courant électrique I, de la gauche vers la droite, qui provoque 1’échauf-
fement du fil. Le fil a une conductivité électrique o et un coefficient Thomson
7. La chaleur se propage le long du fil jusqu’a son extrémité sans qu’il ait de
dissipation par sa surface latérale. L’effet Joule est négligeable par rapport a
leffet Thomson. L’extrémité gauche est maintenu a la température constante
Tpo. Déterminer le profil de température T' (x) le long du fil lorsqu’il a atteint un
état stationnaire. Donner aussi une expression de la température a I'extrémité
droite en termes du coefficient Thomson 7 et de la résistance électrique R du
fil.

11.6 Echangeur de chaleur

Un échangeur de chaleur est constitué de deux tubes identiques séparés par
une paroi diatherme de section A, d’épaisseur h et de conductivité thermique
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k. Dans les deux tubes, un liquide s’écoule aux vitesses uniformes vy = v1 &
et vg = —vy &, avec v1 > 0 et vo > 0, ou & est le vecteur unitaire parallele
a I’écoulement du liquide dans le tube 1. La température T; du liquide dans
le tube 1 est plus grande que la température T du liquide dans le tube 2, i.e.
Ty > T». Ainsi, il y a une densité de courant de chaleur 5, = jq g, avec jg > 0,
qui traverse la paroi séparant les tubes, ou ¢ est le vecteur unitaire orthogonal
a la paroi, orienté positivement du tube 1 au tube 2. Il n’y a pas de densité de
courant de liquide a travers la paroi, i.e. - = 0. La conductivité thermique est
considérée comme négligeable dans la direction de ’écoulement du flux mais
elle est suffisamment importante dans la direction orthogonale pour garantir
une température homogene a travers toute section des deux tubes. On considere
que I'échangeur de chaleur a atteint un état stationnaire.

1) Montrer que les profils de température dans les fluides sont donnés par les
équations différentielles,

K

0, T\ =—— (T, — T
1 hQClvl( 1 2)
K
OpTo = —— (T — T
2 hQCQUQ( 1 2)

ou ¢ et ¢y sont les densités de chaleur spécifiques des liquides 1 et 2, x est
la conductivité thermique de la paroi diatherme.

2) Montrer que la densité de courant convectif de chaleur j = ¢; v1 Th +ca v2 T
est homogene.

3) Déterminer la différence de température AT (z) = T () — T» (z).
4) Déterminer les profils de température T (z) et Ty (z).

5) Montrer que sur une distance suffisamment courte,

_ jHrcua AT (0) kAT (0) .

T _
! (x) C1 V1 + Cc2 V2 h2ci v
T (x :j—clleT(O) Kk AT (0) .
c1v1 + covg h? ¢ vo

11.7 Thermocouple

On considere un fil de métal A dont les extrémités sont reliées a deux fils d’un
métal B qui sont branchés aux bornes gauche « g » et droite « d » d’un volt-
metre (fig. 11.1). Une jonction entre les fils des métaux A et B est maintenue &
une température de référence fixe T} (glace fondue ou azote liquide) et autre
jonction est a une température variable T5 que 'on désire mesurer. Les deux
bornes du voltmetre sont a la méme température T" pour que la mesure ne
dépende que des températures T3 et T aux extrémités du fil de métal A. Cette
mesure de température revient a mesurer ’effet Seebeck du métal A. On consi-
dere que les coefficients Seebeck € 4 et £g sont indépendants de la température.
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Fig. 11.1 Un voltmetre détecte la chute de tension aux extrémités d’un circuit composé
d’un fil de métal B, d’un fil de métal A et d’un autre fil de métal B. Les jonctions entre
les fils sont & température 77 et T> comme indiqué. Les deux bornes du voltmeétre sont &
température 7T'.

1) Déterminer les différences de potentiel électrochimiques fi1 — fg, fi2 — [l
et fig — fo.

2) Compte tenu du fait que le potentiel chimique u. des électrons ne dépend
que de la température T', en déduire la différence de potentiel électrostatique
Ap = ¢4 — g4 entre les bornes du voltmetre.

3) Le pouvoir thermoélectrique € 45 du thermocouple est défini comme la dé-
rivée de la différence de potentiel électrostatique en fonction de la tempé-
rature,

_ 0Ap
0Ty

Exprimer €45 en termes des coefficients Seebeck €4 et .

€AB

11.8 Méthode de Harman

Une barre est contactée a chaque extrémité a des électrodes par des fils élec-
triques qui sont suffisamment épais pour qu’un courant électrique les traversent
mais suffisamment minces pour que le transfert de chaleur y soit négligeable.
Les résistances de contact et la chaleur dissipée par la barre sont négligeables.
Dans ces conditions expérimentales, on peut effectuer une mesure adiabatique
de la résistivité du matériau de la barre. Comme Harman le suggérait dans
son célebre article, “ on peut trouver des conditions expérimentales telles que
les effets Joule et Thomson soient négligeables. Utiliser les relations phénomé-
nologiques lindaires (11.92) pour montrer que la résistivité adiabatique ainsi

W, C. Harman, Special Techniques for Measurement of Thermoelectric Properties, J. App.

Phys. 29, 1373 (1958).
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82
Padp(1+T>
Kp

ol p = 1/0 est la résistivité isotherme, x est la conductivité thermique et € est
le coefficient Seebeck du matériau de la barre.

mesurée s’écrit,

11.9 Générateur Peltier

Un générateur Peletier est constitué de deux éléments thermoélectriques reliés
en série (fig. 11.2). Le coté gauche du générateur est maintenu & une tempéra-
ture T et le coté droit & une température T~ . Le courant électrique I généré
par le générateur Peltier circule & travers les matériaux thermoélectriques dé-
notés 1 et 2. La plaque chauffée & température T relie électriquement les deux
matériaux, mais elle n’est pas électriquement accessible a I'utilisateur. Son po-
tentiel électrique est V. Les autres extrémités des matériaux thermoélectriques
sont du coté froid, a température T~. Ils sont reliés aux bornes électrique du
dispositif. Une résistance de charge Ry est reliée a ces bornes. La tension V est
la différence de potentiel électrique entre les bornes.

V+
T T
I
1 2
I
-
V=0 ) .
T J\/\/\/— T —ov
Ry
= -

Fig. 11.2 Un générateur Peltier a une charge représentée par la résistance Ry reliée aux
bornes. V est la tension entre les bornes. Le pont électrique & VT n’est pas accessible &
I'utilisateur. Les régions notées 1 et 2 représentent les deux matériaux thermoélectriques. Les
régions notées T+ et T~ sont les c6tés chaud et froid du dispositif.

On analyse le fonctionnement de ce générateur a I’aide des équations de trans-
port de la charge électrique et de le chaleur,

quzfo'lf:‘lVTl*UlVng et jQ1:7I€1VT1+T1€1jq1
jq2:—0'2€2VT2—O'2Vg02 et jQQZ—HQVTQ—‘rTQ&quQ
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Les matériaux thermoélectriques 1 et 2 ont une longueur d et une section d’aire
A, ce qui peut s’écrire comme,

d
d:/<ﬁ¢ A:/dSﬁ
0 S

ol 7 est un vecteur unitaire orienté dans le sens des aiguilles d’'une montre
le long de la densité¢ de courant électrique j,, et les vecteurs infinitésimaux
de longueur et de surface dr et dS sont orienté dans la méme direction. La
différence de température entre le c6té chaud et le coté froid s’écrit,

d d
AT:T+—T_=/ d')"~VT1:/ d’l"'(—VTQ)
0 0

De maniere similaire, les différences de potentiel électrique A @1 et A @9 entre
les cotés chaud et froid s’écrivent,

d
A('01:V+:/ d’,"V(,D1
0

d
Ap, =V — V:/ dr - (—V ¢3)
0

La conservation de la charge électrique implique que les densités de courant
électrique sont les mémes pour chaque matériau, ie. j, = j,,. Le courant
électrique I traversant les matériaux 1 et 2 sont donnés par l'intégrale des
densités de courant électrique j, et j,, sur la surface A de la section,

1:/&,%:/&,%
S S

D’apres la relation (10.104), les puissances thermiques Pg, et Pg, sont les inté-
grales des densités de courant de chaleur jq, et jg,, traversant les matériaux
1 et 2, sur la surface A de la section,

Ple/(—le)'dS Psz/jQz'dS
S S

Déterminer :

1) la puissance thermique Pé) appliquée sur le coté chaud du dispositif lors-
qu’aucun courant électrique le traverse.

2) la résistance électrique R des deux matériaux thermoélectriques lorsque les
températures sont égales, i.e. Tt = T, et qu’aucun courant électrique
traverse la résistance Ry, i.e. lorsque Ry = oo. Dans ce cas, un courant
électrique traverse les matériaux thermoélectriques sans traverser la résis-
tance.

3) le courant électrique I en termes de la différence de température AT.
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4) le rendement thermodynamique du générateur défini comme,

Ry I?
-5

ol ici, Py est la puissance thermique du c6té chaud lorsque le courant élec-
trique traverse le dispositif. Montrer que la résistance de charge optimale

s’écrit,
Ry=R+\1+4¢

N . . . . @)
ou ( est un parametre sans dimension donné par,

TjL (61 — 52)2

. (k1 + K2) (Ull—kl)

11.10 Coefficient ZT d’un matériau thermoélectrique

Les propriétés de transport d’un matériau thermoélectrique de section d’aire A
et de longueur L sont définies par les équations de transport,

Jg=—0EVT -0V et Jo=-kVT+Tej,

en conformité avec les relations (11.92), ou V y. = 0, et (11.95). Le rendement
7 du matériau thermoélectrique est défini comme,

P,

q

W:—?Q

o Pg est la puissance thermique et F, est la puissance électrique définie
comme,

P= [ Gy -V
1%
Ecrire le rendement 7 en fonction du rapport, @

1L 1

Tk AAT

ou I est le courant électrique traversant le matériau thermoélectrique. Dans
la limite ou l'effet thermoélectrique est beaucoup plus petit que la puissance
thermique, i.e. re < 1/TF, montrer que le rendement maximal 7 s’écrit,

T\ o¢&?
n=[(1- — ) —T7"
T+ ) 4k
Le coefficient (0 g2/ Ii) T+ est appelé le « coefficient ZT » du matériau thermo-
électrique. Le terme entre parenthéses est le rendement de Carnot.

(2)
(3)

H. J. Goldsmid, Introduction to Thermoelectricity, Springer (2010).

G. J. Snyder, T. S. Ursell, Thermoelectric Efficiency and Compatibility, Phys. Rev. Lett.
91 (4) 138301 (2003).
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11.11 Jonction thermoélectrique

On considere un barreau constitué de deux métaux différents A et B d’épaisseur
d en contact thermique. Les métaux sont définis par leur conductivité électrique
04 ou opg, leur conductivité thermique k4 ou kg, et leur coefficient Seebeck ¢ 4
ou ep. Ces propriétés peuvent toutes étre considérés comme indépendantes de
la température. L’extrémité du métal A est en contact avec un bain thermique
a haute température et 'extrémité du métal B est en contact avec un bain
thermique & basse température ce qui impose une différence de température AT
a travers le barreau. Une densité de courant électrique j, constante traverse
le barreau. On mesure une différence de potentiel électrostatique Ay entre les
extrémités du barreau (fig. 11.3).

I AT

I

I

|
»
>

Fig. 11.3 Un courant électrique traverse un barreau formés de deux métaux différents A
et B en contact électrique. La figure indique les variations de potentiel électrostatique et de
température a travers chaque métal. L’origine de ’axe Or est située a la jonction entre les
deux métaux.

Par conservation de la charge électrique en régime stationnaire, la densité
de courant électrique j, et la densité de courant de chaleur j sont conservés a
la jonction ent.re les mét'auXAet Biie. g, =Jg, = Jqs et.jQ =Jo. = jQB'. Le
courant, électrique I qui traverse les métaux A et B est U'intégrale des densités
de courant j,, et j, . sur la surface A de la section,

I:/qu~dS:/qu~dS
S S

ou le vecteur de surface infinitésimale dS est orienté le long de la densité de
courant électrique j . La puissance thermique Pg exercée sur les métaux A et
B est l'intégrale des densités de courant de chaleur jg,, et jo, sur la surface

A de la section,
s s

Les différences de température ATy et ATg, et les différences de potentiel
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électrostatique A w4 et A pp a travers les métaux A et B sont donnés par,

0 d
ATA:/ d'l“'(—VTA) et ATg = d’l"'(—VTB)
—d 0

0 d
A(pA:/ dr-(—=Va) et A(pB:/ dr - (—Vp)
—d 0

ou le vecteur de longueur infinitésimale dr est orienté le long de la densité de
courant électrique j, et de la densité de courant de chaleur j,. La différence
de température AT et la différence de potentiel électrostatique Ay a travers
tout le barreau satisfont,

AT = AT, + ATy et Ap=Apas+ App

Les métaux A et B ont une longueur d et une section de surface A. Ainsi,

0 d
d:/ dr-ﬁ:/ dr -7 et A:/dS-ﬁ
—d 0 s

ol 7 est le vecteur unitaire orienté dans le sens des aiguilles d’une montre le
long de la densité de courant électrique j, et de la densité de courant de chaleur
Jo

1) Exprimer les équations de transport de la charge électrique et de la cha-
leur (11.95) pour les métaux A et B & la jonction entre les métaux en termes
des forces généralisées VT4, VT, Vya, Vg et de la température Tap
evaluée a la jonction entre les métaux.

2) Si Iépaisseur d des métaux est suffisamment petite, les gradients peuvent
étre considérés comme indépendants de la position. Dans ce cas, intégrer
I’équation de transport de la charge électrique entre les extrémités des mé-
taux A et B.

3) Dans ce méme cas, intégrer I’équation de transport de la chaleur entre les
extrémités des métaux A et B.

4) En déduire les expressions de ATy et ATp en termes de I, AT et des
coeflicients phénoménologiques.

5) En déduire les expressions de Apy et App en termes de I, AT et des
coeflicients phénoménologiques.

6) Déterminer I'expression de Ap en termes de Tap, I, AT et des coefficients
phénoménologiques.

11.12 Effets de transport transverses

Un équation de transport comme la loi d’Ohm (11.74),

Vo=-p-j,
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lie deux vecteurs, qui sont la densité de courant électrique conductif j, et le
gradient de potentiel électrique V ¢ par une application linéaire, qui est la
résistivité électrique p. Mathématiquement, un vecteur est un tenseur de rang
1 et une application linéaire entre deux vecteurs est un tenseur de rang 2.

1) Montrer que la résistivité électrique p peut étre décomposée en une somme
de la partie symétrique p°® et de la partie antisymétrique p®.

2) Montrer que la partie antisymétrique p* apporte une contribution au trans-
port qui peut étre écrite comme,

Vo =—p"(axj,)

ot V% est la contribution antisymétrique au gradient de potentiel élec-
trique et 4 est un vecteur unitaire axial.

La décomposition et ’expression de la partie antisymétrique du gradient
de potentiel électrique est un résultat général qui s’applique pour toute
relation phénoménologique linéaire entre un vecteur densité de courant et
un vecteur force généralisée.

11.13 Effet Hall

On considere un conducteur isotrope en présence d’un champ d’induction ma-
gnétique B. La résistivité électrique est un tenseur de rang 2 qui est une fonction
du champ d’induction magnétique B et la loi d’Ohm’s s’écrit,

Veo=-p(B)- j,

La réversibilité de la dynamique a 1’échelle microscopique implique que la trans-
posée du tenseur de résistivité électriqtie est obtenue en inversant 1’orientation
du champ d’induction magnétique B.“ Ainsi,

p"(B)=p(-B)

Ce résultat ne peut pas étre établi dans le cadre de la thermodynamique mais
requiert I'usage de la physique statistique. En électrodynamique linéaire, si le
champ d’induction magnétique B est appliqué perpendiculairement & la densité
de courant électrique conductif j , montrer que la loi d’Ohm peut s’écrire,

Vo=—pj,— Hi,xB

ou le premier terme est la loi d’'Ohm (11.74) en absence de champ d’induc-
tion magnétique et le deuxieme terme est V'effet Hall (11.75) dans la direction
orthogonale au champ d’induction magnétique B et a la densité de courant
électrique conductif. Utiliser le résultat établi en sect. 11.12.

“ L. D. Landau, E. M. Lifshitz, L.-P. Pitaevskii, Electrodynamics of Continuous Media,

Landav and Lifshitz Course of Theoretical Physics volume 8, Pergamon Press, 3"% edition
(2000).
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11.14 Transport de chaleur et symétrie cristalline

On considere un cristal de symétrie hexagonale, c’est-a-dire qu’il est invariant
sous une rotation d’angle 7/6 autour de 1’axe vertical dans le plan horizontal.
Cela signifie que les propriétés physiques du cristal sont les mémes apres une
telle rotation. Montrer que le tenseur de conductivité thermique symétrique &
s’écrit en composantes comme,

K 0 0
k=0 k. O
0 0 KH

ou k) est la conductivité thermique le long de 1'axe de rotation vertical et
est la conductivité thermique dans le plan de rotation horizontal.

11.15 Effet Ettingshausen planaire

Dans ce chapitre, on a examiné plusieurs exemples de densité de courant uni-
dimensionnel qui induisent le gradient d’une grandeur intensive dans une di-
rection perpendiculaire. Ces effets sont appelés du nom des physiciens qui les
ont découverts : Righi-Leduc (11.29), Hall (11.75), Nernst (11.85), Ettingshau-
sen (11.80). Le dernier se réfere & un gradient de température induit par une
densité de courant électrique orthogonale. Cet effet a été récemment mis en
évidence dans un cristal constitué de deux types de porteurs de charges élec-
triques qui présente une forte anisotropie cristalline dans le plan o1 ont lieu les
transport de chaleur et de charge électrique. Aucun champ d’induction magné-
tique ortl(lsogonal n’a besoin d’étre appliqué orthogonal & ce plan pour observer
cet effet.

Le matériau a deux types de porteurs de charges électriques, les électrons
(e) et les trous (h). On suppose qu’il n’y a pas de « réaction chimique » entre les
deux. Les propriétés thermoélectriques sont isotropes, c’est-a-dire qu’elles sont
identiques dans toutes les directions. Par conséquent, les tenseurs de Seebeck
pour les électrons et les trous s’écrivent,

ee= (5 ° et p—
CT N0 e, h=\0 ¢,

Toutefois, les conductivités varient beaucoup entre deux directions orthogo-
nales. Ainsi, les tenseurs de conductivité s’écrivent,

_ [ Oe¢,aa 0 [ Oh,aa 0
Te = < 0 O'e,bb> ot Th = ( 0 Uh,bb)

C. Zhou, S. Birner, Y. Tang, K. Heinselman, M. Grayson, Driving perpendicular Heat
Flow : (p x n)-Type Transverse Thermoelectrics for Microscale and Cryogenic Peltier
Cooling, Phys. Rev. Lett. 110, 227701 (2013).

(5)
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ou les indices a et b dénotent les axes a et b, qui sont des axes cristallins
orthogonaux.

On considere un transport de charges électriques le long de 'axe = qui fait
un angle 6 avec I’axe a. Monter que la densité de courant électrique j, induit une
densité de courant de chaleur j, le long de I'axe y. C’est 'effet Ettingshausen
planaire. Il peut étre établi en utilisant les instructions suivantes :

1) Montrer que le tenseur de Seebeck de ce cristal s’écrit, «©
-1
e=(octon) (0c-€cton en)

2) Montrer que le tenseur de Seebeck pour le cristal est diagonal et s’écrit,

c— (Caa 0
0 Ebb
ou la composante diagonale &,, est différente de ey, en général. La matrice
est donnée ici pour un repere orienté le long des axes cristallins a et b.

3) Ecrire les composantes du tenseur de Seebeck en termes des coordonnées
spatiales (z,y),
c = Exax  Exy
Eyz  Eyy

en termes des composantes diagonales €., et e, du tenseur de Seebeck
représenté en termes des coordonnées spatiales (a, b).

4) La densité de courant de chaleur jg est liée a la densité de courant élec-
trique j, par,

jo =T,

qui est une version locale de Veffet Peltier (11.108). Le tenseur de Peltier
est 1ié au tenseur de Seebeck par,

II=Te¢
En particulier, pour une densité de courant de électrique j, = jg . &, ou &
est un vecteur unitaire le long de ’axe x, montrer que la composante jg .y

le long de I'axe y de la densité de courant de chaleur jo = jQ & + @,y U,
ou g est le vecteur unitaire le long de 'axe y, s’écrit,

. 1 . )
JQy = 9 T (eaa — €bb)sin(260) jg .z

Ainsi, Veffet Ettingshausen planaire est maximal pour un angle 6 = /4.

© S. D. Brechet et J.-Ph. Ansermet, Heat-driven spin currents on large scales., physica

status solidi (RRL) 5, (12) 423-425 (2011).
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11.16 Structure de Turing

Un milieu biologique est constitué de deux substances 1 et 2 de densités n; et
ng. Ce milieu génére ces deux substances a I’aide de processus caractérisés par
des densités de source m (n1,n2) et ma (n1,n2). Les substances 1 et 2 peuvent
diffuser dans le milieu. Les densités de courant de matiere j; et j, satisfont la
loi de Fick (11.51),

jlz—D1Vn1 et jQZ—DQVTLQ

ou D; > 0 et Dy > 0 sont les constantes de diffusion homogenes des substances
1 et 2. Le milieu a un volume fixe, ce qui signifie que son taux d’expansion
s’annule, i.e. V- v = 0. Ainsi, les équations de continuité pour les substances 1
et 2 s’écrivent,

7;L1+V'j1:7'r1(77,1,77,2) et ’fL2+V‘j2:7T2(TL1,TL2)

A 1D’équilibre, on suppose que le systéme est homogene et caractérisé par les
densités ng; et nge des substances 1 et 2. Dans le voisinage de 1’équilibre,
les densités de source de matiére m; (ny,n2) et ma (n1,n2) s’écrivent au premier
ordre en termes des perturbations de densité An; = n1— ng1 et Ans = no— ngo
pa'r)

1 (Tll, ng) = QH Anl + 912 An2
ma (n1,n2) = Qo1 Ang + Qoo Any

ou les coefficients Q11, 212, Q91, Qoo s’écrivent,

omy omy 0o Oma

1 8711 12 8’1’1,2 2 8n1 = 8”2
Pour rester dans le cadre de la phénoménologie des processus irréversibles, on
fait ici I’hypothese que les processus qui génerent les substances 1 et 2 sont les

deux réactions chimiques 1 —— 2 et 2 s 1 déerites par les coefficients
stoechiométriques v,1 = — 1, vgo = 1, vp1 = 1, vps = — 1 et les densités de
taux de réaction w, et wy. On suppose que la température T et les potentiels
chimiques 1 et o sont homogenes, i.e. VI'=0et V uy = V pg = 0. Analyser
I’évolution des perturbations de densité An, et Ansy en utilisant les instructions
suivantes :

1) Exprimer les coefficients 211, 12, 021, Q22 en termes de la densité totale
n = ny + no, des perturbations de densité An; et Ano, de la température
T et du scalaire W > 0, qui est une combinaison linéaire des éléments de
matrice d’Onsager Lyq, Lab, Lpq €t Lpp. Commencer en utilisant le deuxieme
principe, i.e. ms > 0, et la relation (8.68) pour un mélange de gaz parfaits.

2) Déterminer les équations d’évolution temporelles des perturbations de den-
sité Anl et ATLQ.

3) Montrer que sous les conditions imposées en 1) la relation,

(Bm) = e contior e (32 )

est une solution des équations d’évolution temporelle couplées ou A < 0.
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11.17 Ultramicroélectrodes

En électrochimie, le courant électrique qu’on observe est di essentiellement a
la diffusion des ions dans 1’électrolyte parce que le champ électrique est écranté
par Iélectrolyte, sauf au voisinage immédiat des électrodes. 11 a été constaté
que ces courants conductifs peuvent étre évités en utilisant de trés petites élec-
trodes appelées des wultramicroélectrodes. @D 00 déerit le fonctionne-
ment de ces microélectrodes dans le référentiel de I’électrolyte, i.e. v = 0. Afin
de comprendre comment les densités de courant conductif varient avec la taille
de I'électrode, on considere une électrode sphérique et une densité de courant
conductif de matiere de symétrie sphérique, j4, = jar 7 = j, 7. Montrer que
lorsque le systéme atteint un état stationnaire, la densité de courant conductif
de matiere n’est pas nul. L’analyse du comportement transitoire montrerait
que I'état stationnaire est atteint plus rapidement lorsque 1’électrode est plus
petite. “ En coordonnées sphériques (r, 0, ¢), compte tenu de la symétrie sphé-
rique de la densité de courant de matiere, i.e. /00 = 0 et 9/0¢ = 0, 'équation
de diffusion de la matiere (11.54) pour un soluté de concentration c (r,t) s’écrit,

dc(r,t) 9?%c(r,t)  20c(rt)
o P < o 7 or

Les conditions au bord sont,

c(r>rp,t=0)=c" et lim ¢(r,t) =c*

r—00
ol c* est la concentration tres loin de I’électrode et rg est le rayon de électrode.
D’apres la relation (11.51), la densité scalaire de courant conductif de matiere

Jr qui caractérise cette électrode est,

oc (r,t)

jr (1o, t) = —D o

T™=To
Etablir les résultats suivants :

1) L’équation de diffusion exprimée en termes de la fonction w (r,t) = rc(r,t)
a la structure d’une équation de diffusion ou la coordonnée sphérique r jour
un role analogue a une coordonnée cartésienne.

2) L’équation de diffusion,
ow (r,t) D 0%w (r,t)

ot or?
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admet comme solution,

w(r,t) =B / exp(—v'?)dv/ on v= 2\;§
vo

et B est une grandeur & déterminer. D’abord, écrire w (r,t) = f (n) ou la
variable 7 est une fonction sans dimension de r et ¢ qui s’écrit,

,'n2

77(T7t) = E

3) Dans la limite ol le rayon de 1’électrode est négligeable, i.e. r = 0, la densité
scalaire de courant conductif de matiere s’écrit,

B
- (0,1) = ———~
3 (0.1) 8v/Dt3/2

4) Apres un comportement transitoire, la densité scalaire de courant conductif
de matiere atteint une valeur stationnaire,

Dc*
To

Jr (TO, OO) ==

11.18 Effusivité

Deux longs blocs constitués de matériaux homogenes différents sont a des tem-
pérature T et Ty lorsqu’ils ont mis en contact I'un avec 'autre. L’interface
atteint rapidement une température Ty qui s’écrit,

T — E1T) + BTy
0 E+ Ey

ou By = (/kici > 0 et By = /kacy > 0 sont appelées les effusivitiés des
matériaux 1 et 2, k1 et ko sont les conductivités thermiques et ¢; et co sont
les chaleurs spécifiques par unité de volume des deux matériaux. Si le matériau
1 est tres chaud, mais qu’il a une conductivité thermique x; et une chaleur
spécifique par unité de volume c¢; faibles, et qu’au contraire le matériau 2 a
une conductivité thermique ko et une chaleur spécifique par unité de volume
co importantes, alors la température de l'interface Ty sera presque 75, i.e. le
matériau 2 ne « ressent pas la chaleur » du matériau 1. Etablir ce résultat en
utilisant les instructions suivantes :

1) On consideére un axe x normal & interface avec x = 0 a l'interface, z < 0
dans le matériau 1 et > 0 dans le matériau 2. Soient T} (z,t) et Ts (z, )
les solutions de I’équation de diffusion de la chaleur (11.35) dans les maté-
riaux 1 et 2. Déterminer les conditions au bord sur Tj (z,t) et To (z,t) &
I'interface.
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En utilisant une démarche qui est analogue a celle présentée en sect.11.17,
montrer que les solutions générales pour les profils de température 77 (x,t)
et T (x,t) s’écrivent,

X
Ty (2,t) = Cy + Dy exf | ——
1(®8) =Crt Dier <2\//\Tt>

x
Ty (2,t) = Cy + Dy erf ! >0
5 (z, 1) 5 + Dyer (2\/th> oll T >

ou erf (v) est la fonction d’erreur définie comme,

erf (v) = % /OU exp (— %) ds

et Cq, Cy, D1 et Dy sont des coefficients constants.

Utiliser les conditions au bord pour déterminer ces coefficients en termes
des températures Ty, 17 et Tn. Montrer que la température Ty est donnée
par la relation écrite en termes des effusivités juste apres que les deux blocs
alent atteint une température commune a l'interface.



